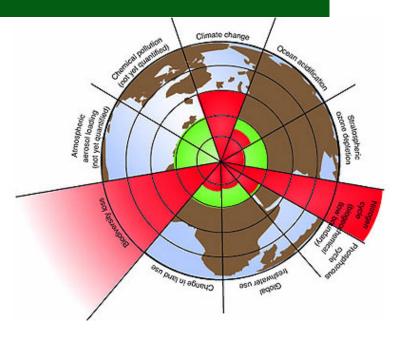
Optimal Resource Allocation During Crisis Conditions

Prof. Kathleen B. Aviso

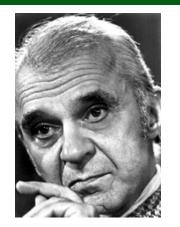


^a Chemical Engineering Department, De La Salle University

Introduction

- Population growth coupled with climate change are expected to increase the incidence of extreme weather events
- Aftermaths potentially result in serious consequences in human activities which translates to economic losses
- □ Alternative energy such as hydropower

is affected by such climactic changes


Тој	o 5 Natural Disasters in 2 (AON Benfield, 2013)	013
Disaster Event	Location	Economic Loss
Flooding, May/June	Central Europe	USD 22 B
Earthquake, April	China	USD 14 B
Typhoon Haiyan, November	Philippines, Vietnam	USD 13 B
Typhoon, Fitow	China, Japan	USD 10 B
Drought	China	USD 10 B

Example of "Ripple Effects" from Possible Disasters

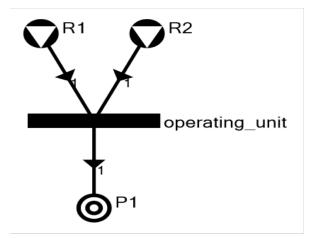
Triggering Event	Examples of Collateral Damage
Tsunami hits a major tourist spot	Job losses due to hotel closuresSmall businesses go bankrupt
Massive flu outbreak hits major cities	 Labor shortage across multiple sectors Loss of industrial output across multiple sectors
Ash from volcanic eruption cripples an international airport	Manufacturing plant closuresTourism losses
Prolonged drought due to climate change	 Crop failure Shutdown of hydroelectric facilities Loss of industrial output Reduced investment Loss of livelihood



Input-Output Model

- Developed by Wassily Leontief (1936) for which he won the Nobel Prize in 1973
- IO provides a framework for representing the interdependence between economic sectors
- IO model is a system of linear equations showing the inter-industry relationship of economic sectors
- The impact of disasters ripple through an economy because of the interdependence between sectors

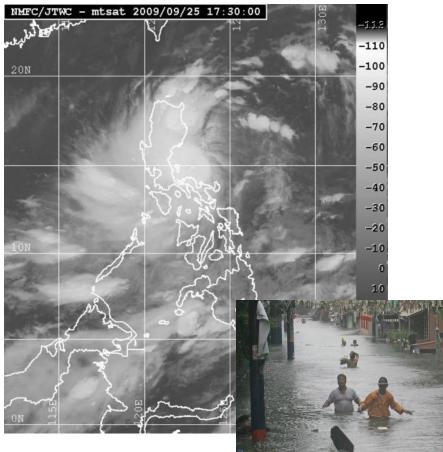
A Three-Sector Input-Output System



Research Forum on Economic Systems Modelling for Disaster Risk Assessment February 26, 2019 Century Park Hotel, Manila, Philippines

P-graph Model

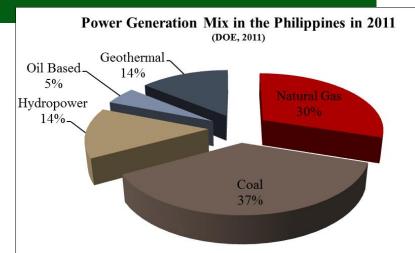
- Process graph or p-graph is a graph theoretic method developed for process network synthesis
- P-graph utilizes 3 algorithms to identify the optimal network structure
 - □ MSG maximal structure generation
 - □ SSG solution structure generation
 - □ ABB advanced branch and bound
- P-graph is a graphical representation of matrix calculations such as MILP and MINLP

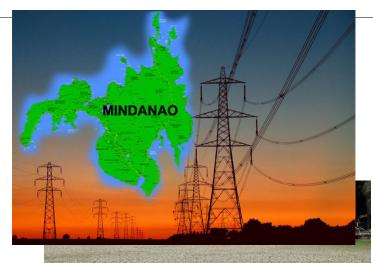


Problem Statement

- \Box Given an economic system with *n* sectors, *n* commodities
- □ Given a crisis event that results in the reduction in availability of the *kth* commodity
- The problem is to determine the optimal allocation of the scarce commodity in order to maximize economic productivity even during a crisis

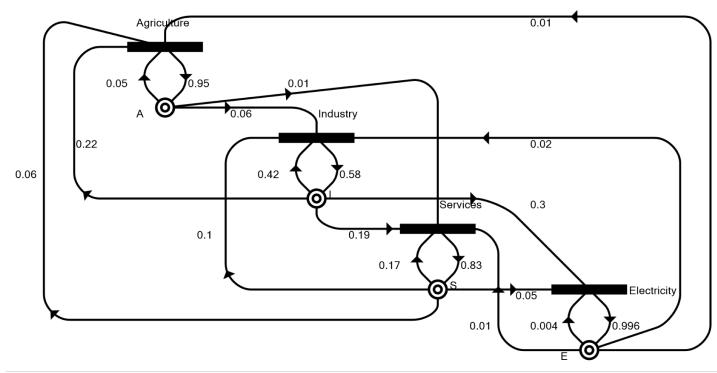
Case Study: The Philippines (Aviso et al., 2015)


- The Philippines is one of the most disaster-prone countries in the world
- Research that contributes to weakening the vicious cycle of disaster vulnerability is essential

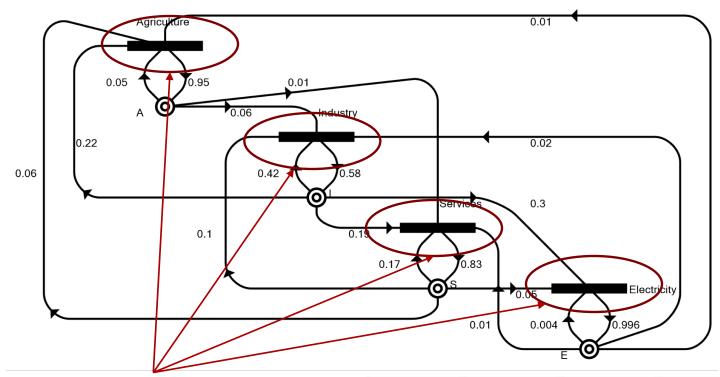

http://commons.wikimedia.org

Case Study 1: The Philippines

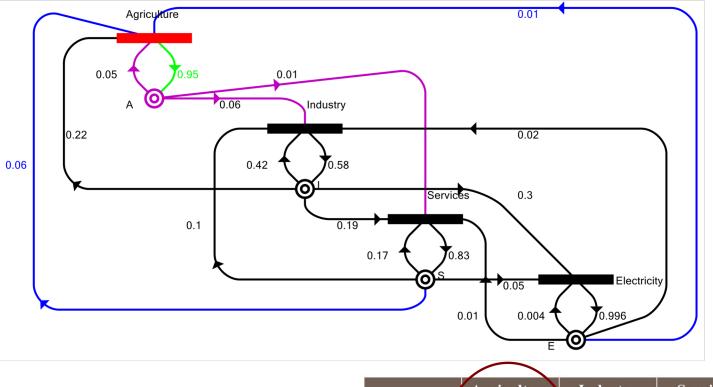
- Mindanao is the southern
 most major island of the
 Philippines
- Alternative energy is encouraged to mitigate greenhouse gas emissions
- Chronic electricity shortages are experienced in the region during the dry season due to over-dependence on hydroelectric power
- A 4 sector low resolution Regional IO is used to demonstrate the implications of a 10% electricity shortage in Mindanao



Davao City, 2014

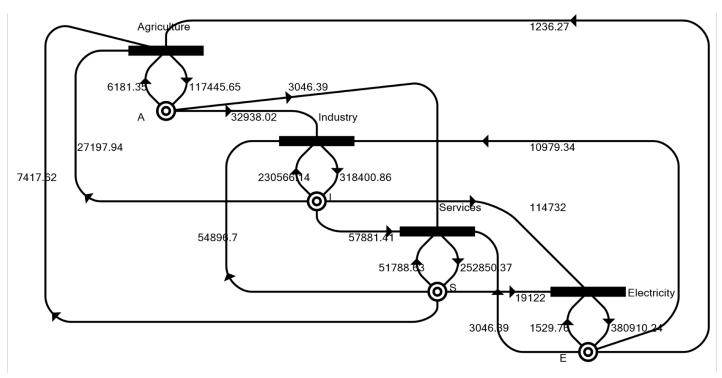

Technical Coefficients of the 4-Sector IO Model

	Agriculture	Industry	Services	Electricity Generation
Agriculture	0.05	0.06	0.01	0.000
Industry	0.22	0.42	0.19	0.300
Services	0.06	0.10	0.17	0.050
Electricity Generation	0.01	0.02	0.01	0.004

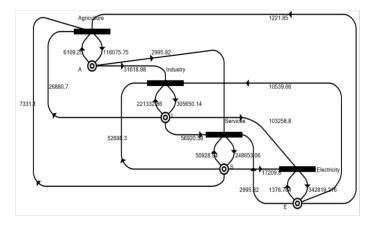


Technical Coefficients of the 4-Sector IO Model

Economic Sectors		Agriculture	Industry	Services	Electricity Generation
	Agriculture	0.05	0.06	0.01	0.000
	Industry	0.22	0.42	0.19	0.300
	Services	0.06	0.10	0.17	0.050
ANUA	Electricity Generation	0.01	0.02	0.01	0.004


Technical Coefficients of the 4-Sector IO Model

	Agriculture	Industry	Services	Electricity Generation
Agriculture	0.05	0.06	0.01	0.000
Industry	0.22	0.42	0.19	0.300
Services	0.06	0.10	0.17	0.050
Electricity Generation	0.01	0.02	0.01	0.004


Economic transactions of the unperturbed 13 **system**

	In Thousand Pesos				
	Final Demand	Total Output			
Agriculture	81, 646	123, 678			
Industry	117, 565	547, 260			
Services	168, 693	301, 291			
Electricity Generation	367, 904	384, 637			

Perturbed System 10% Electricity shortage

Economic Sector	% Reduction in Final Demand	% Reduction in Total Output
Agriculture	0.00	1.17
Industry	0.00	4.04
Services	0.00	1.69
Electricity Generation	9.83	10.00
Over-all	2.79	4.95

Results

- □ The Agriculture, Industry and Services sectors experience no reduction in final demand
- The perturbation in the total output of the Electricity sector translates as a reduction in final output of the other sectors due to interdependence
- Priority is given towards satisfying the final demand in comparison to satisfying intermediate consumption between sectors

Case Study 2: Human Resource Allocation in Organizations (Aviso et al., 2016)

- Organizations have to be prepared to deal with climatic impacts that threaten operational continuity
- Models for dealing with workforce shortage during climatic disruptions should also be developed.
- Human resources are vital for the continuous operation of critical infrastracture

Problem Statement

- Given *N* departments in an organization with each department providing service
- There is a fixed ratio of personnel interaction required
- At normal conditions, the total number of personnel required for each department is known
- A disruption reduces the total number of personnel available

$$\max \lambda + \frac{1}{m} \sum_{i}^{N} \lambda_{i}$$

$$t_f \leq \alpha t_0$$

$$\mathbf{t} = \mathbf{A}\mathbf{t} + \mathbf{e}$$

$$(\mathbf{I} - \mathbf{A})\mathbf{t} = \mathbf{e}$$

$$\left(\!\frac{e_{if}-e_i^L}{e_{i0}-e_i^L}\!\right)\!=\,\lambda_i$$

 $\begin{array}{l} \lambda - \text{degree of satisfaction} \\ \alpha & -\text{fraction of available} \\ \text{workforce} \\ \text{A} - \text{interaction matrix} \\ \text{e} - \text{net output of work} \\ \text{e}^{\text{L}} - \text{lower limit of work} \\ \text{output} \\ \text{t} - \text{total workload vector} \end{array}$

$$\max \lambda + \frac{1}{m} \sum_{i}^{N} \lambda_{i}$$
$$t_{f} \leq \alpha t_{0}$$

$$\mathbf{t} = \mathbf{A}\mathbf{t} + \mathbf{e}$$

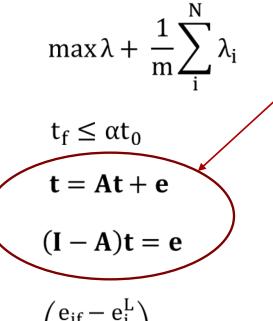
$$(\mathbf{I} - \mathbf{A})\mathbf{t} = \mathbf{e}$$

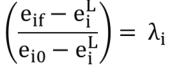
$$\left(\!\frac{e_{if}-e_i^L}{e_{i0}-e_i^L}\!\right)\!=\,\lambda_i$$

Objective Function

- λ degree of satisfaction
- α fraction of available workforce
- A interaction matrix
- e net output of work
- e^L lower limit of work output
- t-total workload vector

$$\max \lambda + \frac{1}{m} \sum_{i}^{N} \lambda_{i}$$
$$t_{f} \leq \alpha t_{0}$$
$$t = \mathbf{At} + \mathbf{e}$$


$$(\mathbf{I} - \mathbf{A})\mathbf{t} = \mathbf{e}$$


$$\left(\!\frac{e_{if}-e_i^L}{e_{i0}-e_i^L}\!\right)\!=\,\lambda_i$$

Human resource available during disruption/crisis 20

- λ degree of satisfaction
- α fraction of available workforce
- A interaction matrix
- e net output of work
- e^L lower limit of work output
- t-total workload vector

Balance equations
according to
interaction matrix λ – degree of satisfaction
 α - fraction of available
workforceA – interaction matrix
e – net output of work

- e^{L} lower limit of work output
- t-total workload vector

$$\max \lambda + \frac{1}{m} \sum_{i}^{N} \lambda_{i}$$

$$t_f \leq \alpha t_0$$

$$\mathbf{t} = \mathbf{A}\mathbf{t} + \mathbf{e}$$

$$(\mathbf{I} - \mathbf{A})\mathbf{t} = \mathbf{e}$$

 $\left(\frac{\mathrm{e_{if}}-\mathrm{e_{i}^{L}}}{\mathrm{e_{i0}}-\mathrm{e_{i}^{L}}}\right)$

Workforce reduction limits

- λ degree of satisfaction
- $\begin{tabular}{ll} \alpha & \mbox{- fraction of available} \\ & \mbox{workforce} \end{tabular} \end{tabular}$
- A interaction matrix
- e net output of work
- e^{L} lower limit of work output
- t-total workload vector

Case Study for a hypothetical Acute Care Hospital

List of departments in ACH.

	Departments
D1	High-level Management
D2	Middle-level Management
D3	General Administration
D4	Support Administration
D5	Finance Administration
D6	Human Services
D7	Information Services
D8	Medical Staff
D9	Nursing Staff
D10	Ancillary Staff

Transaction matrix (**P**), net output of work (\mathbf{e}_0) and initial total work load (\mathbf{t}_0) for case study 1 (in man-days per day).

	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	e ₀	t ₀
D1	0.80	1.40	0.04	0.04	0.04	0.04	0.20	0.04	0.40	0.20	0.80	4
D2	3.60	2.40	1.50	0.30	1.50	2.40	1.50	4.80	4.50	4.50	3.00	30
D3	0.83	20.75	24.90	0.83	4.15	4.15	1.66	5.81	1.66	12.45	5.81	83
D4	0.12	0.12	0.00	1.20	0.12	0.36	0.60	1.20	2.40	3.60	2.28	12
D5	4.32	6.24	0.96	0.96	19.20	0.96	3.84	2.40	0.96	0.96	7.20	48
D6	0.60	1.20	0.60	0.60	0.60	2.40	0.60	0.60	0.60	1.80	2.40	12
D7	5.55	11.10	5.55	1.11	16.65	5.55	33.30	16.65	5.55	7.77	2.22	111
D8	0.45	0.45	0.45	0.45	0.45	0.45	0.45	1.35	4.50	13.50	22.50	45
D9	1.98	1.98	1.98	1.98	1.98	1.98	1.98	3.96	29.70	19.80	130.68	198
D10	0.20	1.00	1.40	0.20	0.80	1.00	1.40	6.60	1.00	2.40	4.00	20

Workforce interaction matrix (**A**) for case study 1.

	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
D1	0.200	0.047	0.000	0.003	0.001	0.003	0.002	0.001	0.002	0.010
D2	0.900	0.080	0.018	0.025	0.031	0.200	0.014	0.107	0.023	0.225
D3	0.208	0.692	0.300	0.069	0.086	0.346	0.015	0.129	0.008	0.623
D4	0.030	0.004	0.000	0.100	0.003	0.030	0.005	0.027	0.012	0.180
D5	1.080	0.208	0.012	0.080	0.400	0.080	0.035	0.053	0.005	0.048
D6	0.150	0.040	0.007	0.050	0.013	0.200	0.005	0.013	0.003	0.090
D7	1.388	0.370	0.067	0.093	0.347	0.463	0.300	0.370	0.028	0.389
D8	0.113	0.015	0.005	0.038	0.009	0.038	0.004	0.030	0.023	0.675
D9	0.495	0.066	0.024	0.165	0.041	0.165	0.018	0.088	0.150	0.990
D10	0.050	0.033	0.017	0.017	0.017	0.083	0.013	0.147	0.005	0.120

Research Forum on Economic Systems Modelling for Disaster Risk Assessment February 26, 2019 Century Park Hotel, Manila, Philippines

Data Limits

Departm	nents	Initial reduction in available workforce $(1 - \alpha_j) * 100$	Maximum level of reduction in net output of work $100 * \beta_i$
D1	High-level Management	10%	25%
D2	Middle-level Management	10%	25%
D3	General Administration	10%	25%
D4	Support Administration	10%	25%
D5	Finance Administration	10%	25%
D6	Human Services	10%	25%
D7	Information Services	10%	25%
D8	Medical Staff	12%	15%
D9	Nursing Staff	12%	15%
D10	Ancillary Staff	10%	40%

Initial and optimized reduction in workforce available for case study 1.

- Reduction in available resources upon disruption
- Each department suffers an initial loss in workforce

Optimized Results

Table 8

Comparison of total workforce available during normal and crisis conditions and total workforce needed for case study 1.

Departments		Initial total workforce available	Available workforce during crisis condition	Total workforce needed durir crisis condition	
	(t ₀)	$(\alpha \mathbf{t}_0)$	(\mathbf{t}_f)		
D1	High-level Management	4	3.60	3.37	
D2	Middle-level Management	30	27.00	25.43	
D3	General Administration	83	74.70	69.87	
D4	Support Administration	12	10.80	10.12	
D5	Finance Administration	48	43.20	40.41	
D6	Human Services	12	10.80	10.07	
D7	Information Services	111	99.90	94.17	
D8	Medical Staff	45	39.60	39.01	
D9	Nursing Staff	198	174.24	174.24	
D10	Ancillary Staff	20	18.00	16.50	

- Optimized results indicate the amount of workforce needed to meet demand for net output of work
- Total workforce needed may be less than available workforce
- Nursing staff was maximized

Conclusions and Future Work

- A P-graph approach for the allocation of various types of resource has been presented
- A graphical approach using the P-graph framework was presented.
- A fuzzy optimization model has been used to simultaneously account the demand for each department
- This framework can be utilized for developing disaster and risk management strategies
- Future work can focus on integrating this approach within a comprehensive decision analysis framework

Acknowledgments

• The authors would like to thank the Commission on Higher Education Philippine Higher Education Research Network (CHED-PHERNet) which funded this work through the Sustainability Studies Program

THANK YOU

For comments and suggestions you may also contact me at: Tel. No.: + 632 – 5244611 loc 127 Email: <u>kathleen.aviso@dlsu.edu.ph</u>

Research Forum on Economic Systems Modelling for Disaster Risk Assessment February 26, 2019 Century Park Hotel, Manila, Philippines