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INTRODUCTION 

 

ABSTRACT 

 

Among the most anticipated data releases of the Philippine 
statistical system is the quarterly real gross domestic product. This 
all-important variable provides the basis for deriving the economic 
growth performance of the country on a year-on-year basis. Official 
publication of this statistics, however, comes at a significant delay of 
up to two months, upsetting the planning function of various 
economic stakeholders. Under this backdrop, data scientists coined 
the term “nowcasting,” which refers to the prediction of the present, 
the very near future, and the very recent past, based on information 
provided by available data that are sampled at higher frequencies 
(monthly, weekly, daily, etc.). Nowcasting, however, opens up the 
“mixed frequency” problem in forecasting, which is the data 
frequency asymmetry between the dependent and independent 
variables of regression models that will be used in forecasting. 

 
The central objective of this study is to demonstrate the viability of 

using a state-of-the-art technique called MIDAS (Mixed Data 

Sampling) Regression to solve the mixed frequency problem in 

implementing the “nowcasting” of the country’s economic growth. 

Different variants of the MIDAS model are estimated using 

quarterly Real GDP data and monthly data Inflation, Industrial 

Production, and Philippine Stock Exchange Index. These models are 

empirically compared against each other and against the models 

traditionally used by forecasters in the context of mixed frequency. 

The results indicate the feasibility of adopting the MIDAS 

framework in accurately predicting future growth of the economy 

using information from high-frequency economic indicators. Certain 

MIDAS models considered in the study performed better than 

traditional forecasting models in both in-sample and out-of-sample 

forecasting performance. 

Keywords: Keywords: Keywords: Keywords: Nowcasting;  MIDAS Regression; Mixed Frequency 
Problem; Temporal Aggregation; Ragged Edge Problem; Bridge 
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“Nowcasting” has been a buzzword in the current economic forecasting literature. It refers to 

the prediction of the present, the very near future, and the very recent past (Giannone, 

Reichlin, and Small, 2008), which has a lot of decision-making and planning implications. Its 

relevance to economic planning lies in the fact that the most important indicators of 

economic health (gross domestic product and its components—personal consumption 

expenditure, gross domestic capital formation, government expenditure, etc.) are sampled and 

published quarterly with substantial publication delays up to two months, thus, upsetting the 

planning activities of various stakeholders of the economy (the central bank, legislators, 

fiscal planners, financial and business firms, and others who are immensely affected by the 

business cycle). On the other hand, many variables sampled at higher frequencies (monthly, 

weekly, daily, etc.) like industrial production, inflation, monetary aggregates, interest rates, 

stock market index, etc., that are known to carry predictive information on future economic 

growth are already available and the useful information they carry can be extracted to the 

fullest, even before the final quarterly indicators are released. The central objective of the 

“Nowcasting” research is in developing models and procedures that will make this 

information extraction process as effective and as reliable as possible. 

 

Relationships of variables in Economics, Finance, and other fields are traditionally modeled 

as a form of regression equations or systems of equations, wherein the variables are sampled 

in the same frequency. When any or all of the regressors is/are in higher frequency, the usual 

recourse, called temporal aggregation approach, is to temporally aggregate these variables, 

usually in terms of their sums or averages to conform with the sampling frequency of the 

regressand, thus, synchronizing the data sampling of the left hand and right hand side 

variables to that of the lower frequency regressand, making the analysis viable. Although 

computationally convenient, this recourse of solving the mixed frequency problem does not 

conform to our desire to extract predictable information from the more frequently sampled 

regressors because of information loss and possible misspecification errors induced by the 

process of aggregation might compromise the forecast quality.  

 

An alternative option called the individual coefficient approach, which is the extraction of 

hidden information in the higher frequency regressors, may be possible if the model is 

augmented by the individual components of the regressors, each with its own coefficient to 

be estimated.  For example, if the regressand is quarterly and the regressor has m components 

(that is, m periods in a quarter, m = 3 if the regressor is monthly, m = 66 if the regressor is 

daily, etc.) of this variable. This will effectively introduce a multiplier for each component, 

which may be interpreted as the component’s marginal contribution to the regressand during 

the specific quarter. This option is obviously unappealing because of parameter proliferation 

(with consequent loss in degrees of freedom), especially if m becomes large. In the temporal 

aggregation option, the multipliers effectively all equal to 1/m, when the aggregation scheme 

is averaging.  

 

The MIDAS Regression approach represents an intuitively appealing middle ground between 

the two options discussed above. The MIDAS (Mixed Data Sampling) approach, introduced 

by Ghysell, Sta Clara, and Valkanov (2004), allows for non-equal weights (multipliers) for 

the components that are parsimoniously reparametrized through a weighing scheme anchored 

on the use of lag polynomials. The way lag polynomials are employed in defining the 

weighing scheme for the multiplier represents a specific MIDAS regression model. 

 



 

 

In this study, MIDAS regression models are estimated and matched against models 

traditionally used in dealing with the “mixed frequency” problem.  

 

Technical Specifications of the Models 
 

Suppose the mixed frequency model under consideration is given as follows: 

 

��� = ∑ ����	��
��� +  ����, ��,�� � + ��      

         (1) 

where,  

 ���- is the dependent variable sampled at low frequency ���- is the set of regressors sampled at the same (low) frequency as the regressand (possibly 

including lags of Y for autoregressive or ARDL form) ��,�� - is the set of regressors sampled at a higher frequency 

 ��, �, and � – are the parameters to be estimated 

f (.) – is a function translating the higher frequency data into the low frequency 

 

The following are the models that will be used in the study, each of which has a different way 

of translating the higher frequency data into their low frequency form, through their specific 

choice of f (.). 

 

Model 1: Temporal Aggregation  

A conventional way to address mixed frequency samples is to use some type of aggregation, 

perhaps summing or taking average of high-frequency data that occur between samples of the 

lower-frequency variable (Clements and Galvão, 2008). For example, we can take a simple 

average:  

  

��� = �
� ∑ ��	���	����                   

       (2) 

 and carry out the following regression:  

 

��� = ∑ ����	��
��� +  ���� + ��                                   

        (3) 

Where  

 

 m – is the number of periods in the higher frequency corresponding to a single period in the 

lower frequency. ��� is the high-frequency observation corresponding to the last observation 

in period t. As mentioned previously, the problem with this is that it assumes that the slope 

coefficients on each individual high-frequency observation of X are equal.  

 

Model 2: VAR Forecasting Model  



 

 

The forecasting capability of Vector Auto Regressive (VAR) models offers another way of 

using available high-frequency predictors in forecasting low frequency target variables. This 

is done by first converting the high-frequency variables into the sampling frequency of the 

target variable, after which, an unrestricted VAR model (Sims, 1982) is constructed featuring 

the target variable and the time aggregated predictors, forming the vector. Forecasts are then 

made out-of-sample for all of the variables in the vector, which are all considered 

endogenous. The focus of interest in this exercise is the forecast for the target variable. 

Model 3: Bridge Equation 

Another intuitive alternative in using higher-frequency data (e.g., monthly) to forecast lower 

frequency series (e.g., quarterly) would be to estimate a “bridge equation.” This method use 

popular forecasting models (such as VARs, ARIMA, Exponential Smoothing, etc.) for each of 

the high frequency indicators. These models are then used to provide forecasts for the 

missing higher-frequency (monthly) values. The forecasts are then aggregated to provide 

estimates of the quarterly values of the regressors of the bridge equation. A bridge equation is 

nothing but a low frequency (quarterly) regression with the aggregated (quarterly) forecasts 

of high frequency (monthly) regressors. A bridge equation can be written as: 

 

��� = �� +  ��!"#��� + ��
�

���
 

           

 (4) 

where ��� are the selected high frequency indicators (forecasted from the high frequency 

VAR, for example) aggregated at low frequency. The lag polynomial  ��!"# embeds the 

parameters of the model for each relevant lags of each regressor. Many Central Banks use the 

Bridge Equation Model in coming up with advance releases of important statistics (see e.g., 

Runstler and Sedillot 2003; Zheng and Rossiter 2006). Ingenito and Trehahn (1996) used 

bridge equations to “nowcast” US real GDP based on nonfarm payrolls, industrial production 

and real retail sales. 

 

MIDAS (Mixed Data Sampling) Regression   

The key feature of MIDAS regression models is the use of a parsimonious and data-driven 

weighting scheme: 

 

��� = ∑ ����	��
��� +  � ∑ $�	��	���� !�#��	�� + ��      

          

 (5) 
 

 where w(.) is a weighting function that transforms high-frequency data into low 

 frequency data.  

 

MIDAS estimation offers a number of different weighting functions/schemes which define a 

specific MIDAS regression model 



 

 

 

Model 4: Almon or PDL MIDAS 

MIDAS regression shares some features with distributed lag models. In particular, one 

parametrization used is the Almon lag weighting (also known as Polynomial Distributed Lag 

weighting), which is widely used in classical distributed lag modeling. The weighting scheme 

can be written as follows: 

  

��� = ∑ ����	��
��� +  ∑ ��%��� ∑ &�	�'��� ��	�� + ��       

          (6) 

 

  where,  

k - is the chosen number of lags (which may be longer or shorter than m) 

p - is the order of the polynomial 

 

Notice that the number of coefficients to be estimated depends on the polynomial order (p) 

and not on the number of lags (k) chosen.  

 

Model 5: Beta Weighting MIDAS 

An alternative method is based on the following Beta function:  

 

��� = ∑ ����	��
��� +  � ∑ (�,�'��� + ��       

          (7) 

  where,  

(�,� = ) *+
,-.-!�	*+ #,/.-

∑ *0
,-.-!�	*0 #,/.-1023

+ �45 ��	��          

          (8) 

 

where 6� = �	�
'	� 

 

This function involves estimation of three parameters, but we can restrict them by imposing 

either: �� = 1 or �4 = 0 or �� = 1 and �4 = 0 . The number of parameters estimated can, 

therefore, be 1, 2, or 3 (depending on the types of restrictions we impose). Notice also that 

with this weighting scheme, the number of parameters also does not increase with the number 

of lags, but the estimation involves a highly non-linear estimation procedure (Ghysels, Rubia, 

and Valkanov, 2009).  

 

Model 6: Step Weighting MIDAS 

Perhaps the simplest weighting scheme is a step function, where the distributed lag pattern is 

approximated by a number of discrete steps. The Step weighting can be written as:  

 



 

 

��� = ∑ ����	��
��� +  ∑ 9�	�'��� ��	�� + ��         

          (9) 

where, 9� = �' 

 

k – is a number of lags (k may be longer or shorter than m)  

 : = �
;   and < is the number of steps.  

 

Step-weighing lowers the number of estimated coefficients since it restricts consecutive lags 

to have the same coefficient (Forsberg and Ghysels, 2007). For example, if k=12 and <=4, 

the first four lags have the same coefficient, the next four lags have the same coefficient and 

so on, all the way up to k=12. 

 

Model 7: U-MIDAS  

U-MIDAS or Unrestricted Midas is appropriate if the differences in sampling frequencies are 

small (say, monthly and quarterly data). When the difference in sampling frequencies 

between the regressand and the regressors is large, distributed lag functions are typically 

employed to model dynamics avoiding parameter proliferation. Introduced by Foroni, 

Marcellino, and Schumacher (2012), U-MIDAS does not depend on any specific functional 

lag polynomial since in most macroeconomic applications differences in sampling 

frequencies are often small, usually quarterly-monthly. In such a case, it might not be 

necessary to employ distributed lag functions and parameters can be estimated by OLS. In 

essence, the U-MIDAS approach can be written as:  

��� = ∑ ����	��
��� +  ∑ ��	��	���� ��	�� + ��      

         (10) 

where we estimate a different slope coefficients for each high-frequency lag. 

 

Estimating the Models 

The empirical counterparts of Models 1 to 7 are constructed as part of the tasks completed in 

this study. All of the operational models are estimated using Eviews 9.5 software released 

just recently, which is the only commercial software available that supports estimation of 

MIDAS regression. All data to be used—quarterly, monthly, and daily statistics—are 

accessed through PSA, BSP, and PSE websites. The following variables over the period 

2002-2016 comprise the database of the study: 

Quarterly (2002q1–2016q4): Economic Growth (year-on-year continuously compounded 

growth of Seasonally Adjusted Gross Domestic Product, in real terms (the regressand) 

computed for as: 

1400*log( / )%t t tecogrowth rgdp rgdp
−

=   



 

 

Where: t
rgdp =  Seasonally adjusted real Gross Domestic Product for quarter t. 

Monthly (2002m1–2016m12):  

• Inflation: 1infl 100* log( / )%t t tcpi cpi
−

=   

• Growth of Industrial Production: 1100 * log( / )%
t t t

ipg ip ip
−

=   

• PSEI Return:   1100*log(PSEI / )%t t tpseig PSEI
−

=   

• Interest Rate: 
t

IR =  91 days T-Bills Return during month t 

• Exchange Rate (Peso to US Dollar) Return: 1
100*log( / )%

t t t
erg er er

−
=   

RESULTS 

Preliminary analysis of the quarterly correlation matrix reveals the potential of some of the 

temporally aggregated monthly variables significant growth drivers. As shown in Table 1, 

inflation, growth of industrial production, and possibly stock index returns (pseig) produce 

relatively high contemporaneous correlation with economic growth. 

Table 1. Correlation Matrix of the Potential Explanatory Variables for Mixed 

Frequency Regressions of Economic Growth 

 

In the above matrix, each cell exhibits the sample correlation coefficient between the row 

variable and the column variable, together with the p-value of the test for zero correlation. 

The first column is quite revealing as it indicates the variables with significant correlation 

with economic growth—Inflation, Industrial Production growth, and PSE Returns. Economic 

intuition may lead us to believe that these variables carry predictive contents despite their 

      
      

Correlation 

p-value Econ Growth  FX Returns   Inflation  IP Growth  Interest Rate  

 
FX Returns 0.008518 1.000000    

 0.9485 -----     

Inflation  -0.286533 0.077610 1.000000   

 0.0264 0.5556 -----    

IP Growth  0.283804 0.074094 -0.148502 1.000000  

 0.0280 0.5737 0.2575 -----   

Interest Rate -0.174246 -0.066392 0.404472 0.022381 1.000000 

 0.1830 0.6143 0.0013 0.8652 -----  

PSE Returns 0.202960 -0.468602 -0.150008 0.005459 0.071218 

 0.0497 0.0002 0.2526 0.9670 0.5887 
      
      



 

 

asymmetric sampling frequency with economic growth, may be considered as the key 

explanatory variables for growth. 

All of the variables in all regressions are stationary as evidence by the results of individual 

unit root tests shown in Table 2 below. These results potentially prevent the occurrence of 

spurious regressions. This conjecture will be empirically validated through the conduct of 

cointegration assessment using appropriate procedure. 

 

Table 2. Stationarity and Unit Root Tests of the Key Variables 

 

Test Statistic  Eco. Growth  Inflation IP Growth PSE Returns 

 

KPSS 
1Statistic   0.208503 0.296980  0.180490  0.058695 

   (p>0.10)  (p>0.10)  (p>0.10)  (p>0.10) 

ADF 
2Statistic   -7.09498  -3.94489  -8.91786  -6.01192 

(p<0.000) (p<0.000) (p<0.000) (p<0.000) 

PP 
2Statistic   -7.09148  -2.40887  -12.01738 -6.025076 

   (p<0.000) (p<0.000) (p<0.000) (p<0.000) 

Order of Integration I(0)  I(0)  I(0)  I(0) 

 
1 :

o
H  Variable is stationary  

2 :
o

H Variable has a Unit root 

In order to empirically demonstrate the presence of long run relationship(s) among the three 

key variables and economic growth, testing for cointegration is necessary. Since all variables 

are integrated of order 1 (i.e., I (1)), the Johansen cointegration tests cannot be used, instead 

we use the Pesaran Bound test for cointegration under the ARDL approach. Table 3 confirms 

the presence of long run equilibrium relationship between economic growth and its 

postulated determinants. 

    

    

    

    

    

    

    

    

    



 

 

    

    

    

    

Table 3. ARDL Bound Test for the Presence of Cointegration 

***significant at 0.01 level 

 

ARDL Forms of the Models 

It is expected that the effect of its predictors to Economic Growth is not instantaneous. The 

explanatory contributions of the regressors are manifested in the target variable with a lag; 

hence the ARDL (AutoRegressive Distributed Lag) is an appropriate specification of the 

relationship. However, the central problem is in the determination of the optimal lag of all 

variables in the model. Different lag configurations for the variables constitute different 

ARDL models from which we are going to select the optimal specification. We adopt the 

procedure of model selection based on the AIC (Akaike Information Criterion).  

Out of a total of 500 ARDL models evaluated, the top 20 of these models with the smallest 

AIC scores are shown in Table 5. The best among them is the ARDL (1, 4, 0, 1)—

autoregressive order is 1 and the distributed lag orders for Inflation, Industrial Production 

Growth, and PSE Returns are 4, 0, and 1, respectively. 

 

 

 

 

 

Bounds Test for Cointegration Null Hypothesis: No cointegrating relationships exist 
     
     

Test Statistic Value 
Significance 

Level I(0) I(1) 
     
     F-statistic  21.89180*** 10%   2.72 3.77 

  5%   3.23 4.35 
  2.5%   3.69 4.89 
  1%   4.29 5.61 
     
     EC = ecogrowth - (-0.0551*infl + 0.2776*ipg + 0.5095*pseig ) 

     

Long Run Coefficients 
     
     Variable Coefficient Std. Error t-Statistic p-value 
     
     Inflation -0.055089 0.272754 -0.201973 0.1411 

IP Growth 0.277642 0.157034 1.768031 0.0860 
PSE Returns 0.509460 0.162470 3.135730 0.0035 

     
     



 

 

 

 

 

Table 4. Top 20 ARDL Models Using the Akaike Information Criterion 
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To implement Model 1 as an ARDL (1, 4, 0, 1) with time aggregated monthly regressors into 

quarterly frequency, we use a recent inclusion in the Eviews 9.0 suites of commands—the 

ARDL estimation and the results are presented in Table 6. 

Performing the different diagnostic procedures on this model, the following are noted:  No 

residual autocorrelation up to the 4
th

 order, no heteroscedasticity, Ramsey-RESET confirms 

correct specification, and no structural change. It is important to check for structural change 

within the sample horizon as its presence will affect the quality of the forecasts. Presented in 

Table 7 is the result of the Quandt-Andrews Unknown Breakpoint Test for structural change. 

 

 

 



 

 

 

 

 

Table 6. Estimated ARDL (1, 4, 0, 1) 

 
 
 

Table 7. Quandt-Andrews Unknown Breakpoint Test 

For Structural Change 

Dependent Variable: ECOGROWTH  
Method: ARDL    
Included observations: 44 after adjustments 
Maximum dependent lags: 4 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (4 lags, automatic): INFL IPG PSEIG   
Number of models evaluated: 500  
Selected Model: ARDL(1, 4, 0, 1)  

     
     Variable Coefficient Std. Error t-Statistic Prob.*   
     
     ECOGROWTH(-1) -0.150920 0.141117 -1.069474 0.2924 

INFL -0.306245 0.493605 -0.620424 0.5391 
INFL(-1) 1.824895 0.783209 2.330024 0.0259 
INFL(-2) -1.881618 0.888671 -2.117339 0.0416 
INFL(-3) -1.125012 0.916205 -1.227904 0.2279 
INFL(-4) 1.424577 0.502055 2.837489 0.0076 

IPG 0.319544 0.168774 1.893325 0.0669 
PSEIG 0.269582 0.127310 2.117521 0.0416 

PSEIG(-1) 0.316767 0.133321 2.375974 0.0233 
C 5.380362 1.857334 2.896821 0.0065 
     
     R-squared 0.620667     Mean dependent var 5.189676 

Adjusted R-squared 0.520256     S.D. dependent var 3.580807 
S.E. of regression 2.480194     Akaike info criterion 4.851267 
Sum squared resid 209.1463     Schwarz criterion 5.256765 
Log likelihood -96.72788     Hannan-Quinn criter. 5.001645 
F-statistic 6.181235     Durbin-Watson stat 2.135071 
Prob(F-statistic) 0.000040    

     
     *Note: p-values and any subsequent tests do not account for model 

        selection.   

 
Null Hypothesis: No breakpoints within 15% trimmed data 
Varying regressors: All equation variables 
Equation Sample: 2002Q4 2013Q4 
Test Sample: 2004Q3 2012Q2 
Number of breaks compared: 32 

    
    Statistic Value    p-value.   
    
    Maximum LR F-statistic (2009Q2) 3.042404  0.1331 

Maximum Wald F-statistic (2009Q2) 15.21202  0.1331 
    

Exp LR F-statistic 0.594499  0.4925 
Exp Wald F-statistic 5.127762  0.1064 

    
Ave LR F-statistic 1.001204  0.4255 



 

 

 

Empirical Comparison of the Models Out-of-Sample Forecasting Performance 

The different models considered in this study are estimated, tested, and empirically compared 

as to their capability to effectively track, out of sample, the actual growth data. Presented in 

Table 8 are the results of this comparison, first, based on each model’s ability to encompass 

the forecasting ability of the other models in the upper panel, and second, their scores on the  

different evaluation statistics.  

Table 8. Forecast Evaluation     
Evaluation sample: 2014Q1 2016Q4    

       
       Encompassing Tests 

       
Null hypothesis: Forecast of model i includes all information contained in others 

       
       Forecast F-stat    p-value      
       
       Model1 2.380380 0.1605     

Model2 1.280371 0.3810     
Model3 2.333357 0.1659     
Model4 10.79025 0.0059     
Model6 1.797065 0.2477     
Model7 9.044966 0.0092     

       
        

Evaluation 

statistics       
       
       Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 
       
       Model1  2.224218  1.777170  27.77141  33.75438  0.185607  0.747321 

Model2  2.007592  1.725676  26.10817  29.20138  0.172795  0.699839 
Model3  2.239918  1.787617  27.89750  33.94568  0.187012  0.747411 
Model4  3.270208  2.662702  45.27516  41.92192  0.250342  0.866209 
Model6  1.898047  1.633489  28.71923  27.35359  0.147565  0.437027 
Model7  3.183358  2.584310  43.73610  40.59814  0.244464  0.866315 
Simple mean  2.171492  1.808920  28.73343  30.26478  0.176487  0.674793 

       
       

 

Ave Wald F-statistic 5.006022  0.4255 
    
    Note: probabilities calculated using Hansen's (1997) method 
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The obvious winner in this out-of-sample forecast comparison is a MIDAS model – the Step-

weighing MIDAS (Model 6), not only that it encompasses the other models, it also 

obliterated all other competing models in all evaluation criteria, except the MAPE (mean 

absolute percentage error). Model 2 or the VAR model consistently placed 2
nd

 in all criteria, 

except MAPE where it ranked 1
st
. The outstanding performance of the MIDAS model with 

respect to the RMSE considered as the benchmark criterion in forecasting, accentuate its 

superiority as it is the only model with RMSE of less than 2.0. Incidentally, estimation for 

Model 5, the Beta Function weighing MIDAS failed to converge. 

 

 

SUMMARY AND CONCLUSION 

 

As of late, the mixed frequency and rugged-edge problems in economic forecasting and 

structural analysis have been attracting a considerable following in the literature. This is true 

most especially among policy makers and planners who are hard pressed in making an 

updated assessment of the performance of the economy, under limited and at times missing or 

incomplete information. Most important data releases related to economic growth are 

normally done quarterly (e.g., gross domestic product and its components in the national 

accounts). Moreover, these releases often come with substantial publication delays (which 

cause the so-called “ragged-edge problem”—missing values for some of the variables, 

especially at the end of the sample), whereas other equally important statistics, which are 

reported more frequently are already available, even before the publication gaps are filled.  

These problems of “mixed frequency”, “ragged edge” and asynchronous data availability 

motivate this study, whose objective is to demonstrate the viability of using the MIDAS 

Regression modeling—a “state-of-the-art” approach capable of generating “nowcasts” of the 

country’s economic growth. In this study, seven Forecasting models, including four variants 

of the MIDAS model are estimated, tested and empirically evaluated for their out-of-sample 

forecasting performance over a forecast horizon of 12 quarters (2014q1 to 2016q4). Model 



 

 

estimation is over the period 2002q1 to 2013q3 setting aside the remaining available data for 

out-of-sample forecast evaluation.  

The results indicate the outstanding performance of a variant of the MIDAS model which is 

the Step-weighing MIDAS in practically all of the evaluation criteria, except one. This 

demonstration led us to conclude the superiority of the MIDAS approach in “nowcasting” the 

year-on-year quarterly economic growth of the Philippine economy. Hopefully, this study 

may be able to supply the missing element in the periodic Angelo King Institute (AKI) press 

releases about the condition of the economy—advanced estimates of the current and future 

economic performance statistics, which unlike other most think tank groups’ forecasts are 

based on a rigorous cutting-edge macro econometric framework. 
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