Optimal Resource Allocation During Crisis Conditions

Prof. Kathleen B. Aviso, PhD De La Salle University, Manila, Philippines

Decoupling Growth and Environmental Impacts

(Rockström et al., 2009. Nature 461: 472)

- Economic and demographic trends are pushing the limits of Earth's "safe operating space."
- Complex interactions exist between resource use and emissions.

Other Emerging Sustainability Issues

CLIMATE CO CENTRAL

SUSTAINABILITY

Weather Disasters Have Cost the Globe \$2.4 Trillion

Factors such as development, population growth and globalization are likely to blame, but the report suggests that we have learned from past disasters

By Brian Kahn, Climate Central on July 17, 2014

You've Heard of the Anthropocene? Welcome to the Hellocene

It sounds like a bad disaster movie, but climate change isn't an abstract threat for our grandchildren. It's here now

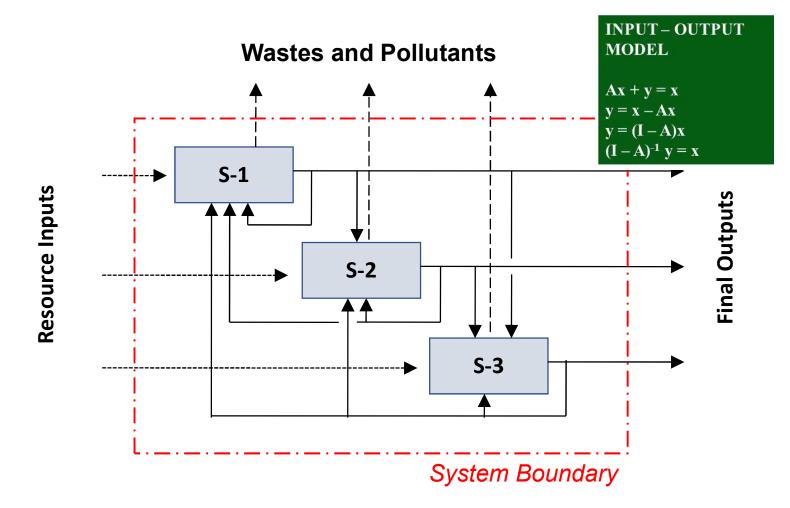
By Rob Jackson on November 26, 2018

READ THIS NEXT

PUBLIC HEALTH A Way to Reduce Hospital Infections Dramatically 16 minutes ago – Fabio Belloni I Opinion

BEHAVIOR & SOCIETY How "Paralinguistic Cues" Can Help You to Persuade Disasters result in economic losses and reduced availability of resources

 Other emerging sustainability issues may affect options available to industry in the future.


"Ripple Effects" from Possible Disasters

Triggering Event	Examples of Collateral Damage
Tsunami hits a major tourist spot	Job losses due to hotel closuresSmall businesses go bankrupt
Massive flu outbreak hits major cities	 Labor shortage across multiple sectors Loss of industrial output across multiple sectors
Ash from volcanic eruption cripples an international airport	 Manufacturing plant closures Tourism losses
Prolonged drought due to climate change	 Crop failure Shutdown of hydroelectric facilities Loss of industrial output Reduced investment Loss of livelihood

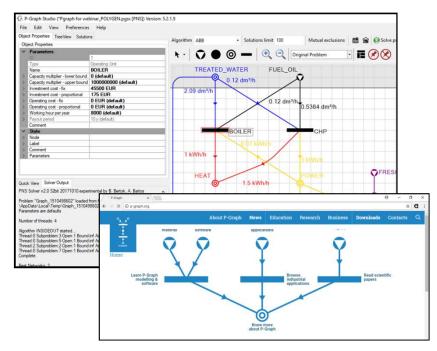
4

A Three-Sector Input-Output System

Outline

□P-graph model

Drought results in electricity shortage in the Philippines


□Human resource allocation during crisis

□Conclusions and Future Work

The P-graph Framework

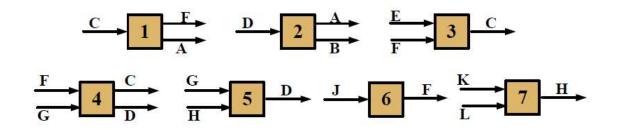
- Graph-theoretic framework for Process
 Network Synthesis (PNS) developed by Ferenc
 Friedler, Liang-Tseng
 Fan, and coworkers.
- Advantages include computational efficiency and automated generation of alternative structures.

P-graph Fundamentals

P-graph Foundation: Five Axioms

(Friedler et al., 1992. CES 47: 1973)

- (S1) Every final product is represented in the structure.
- (S2) A material represented in the structure is a raw material if and only if it is not an output from any operating unit represented in the structure.
- (S3) Every operating unit represented in the structure is defined in the synthesis problem.
- (S4) Any operating unit represented in the structure has at least one path leading to a product.
- (S5) If a material belongs to the structure, it must be an input to or output from at least one operating unit represented in the structure.



P-graph Component Algorithms (Friedler et al., 1992. CES 47: 1973; 1993. CACE 17: 929; 1996. In: SOAGO p. 609)

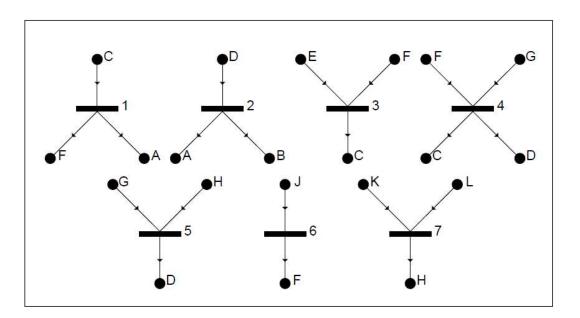
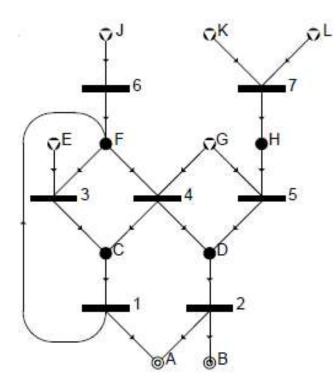

Algorithm	Description
Maximal structure generation (MSG)	Mathematically rigorous generation of a complete, error-free "superstructure"
Solution structure generation (SSG)	Identification of combinatorially feasible subset networks of maximal structure
Accelerated branch- and-bound (ABB)	Efficient branch-and-bound algorithm enhanced with SSG logic to eliminate infeasible and redundant solutions

Illustration of MSG and SSG

(Friedler et al., 1995. CES 50: 1755)



Product: A Raw materials: E, G, J, K, L

Illustration of MSG and SSG

(Friedler et al., 1993. CACE 16: S313; *Kovacs et al. 2000. CACE 24: 1881)

- MSG algorithm determines the structure that contains all possible networks.
- □ The result is an error-free superstructure.
- P-graph was shown to have 30% improvement over erroneous MP model*

Impact of Disasters on the Economy

(Aviso et al., 2015)

- Disasters result in shortage of resources and reduction in production capacities
- Disruptive events result in ripple effects throughout the economy
- □ Allocation of resources should be optimized to minimize impacts

Problem statement for economic systems

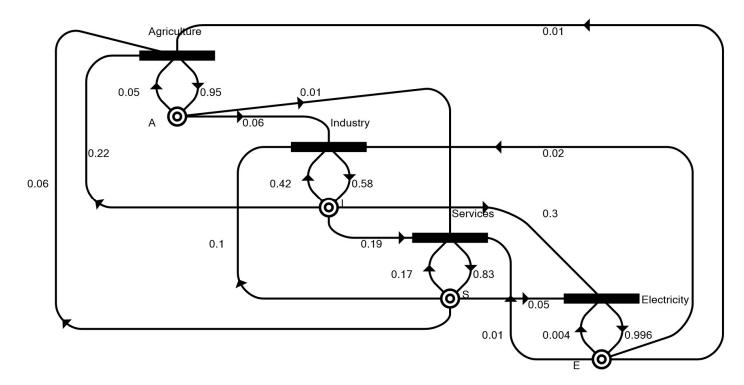
- Given an economic system with *n* sectors, *n* commodities
- Given a crisis event that results in the reduction in availability of the *kth* commodity
- The problem is to determine the optimal allocation of the scarce commodity in order to maximize economic productivity even during a crisis

Drought causes electricity shortage

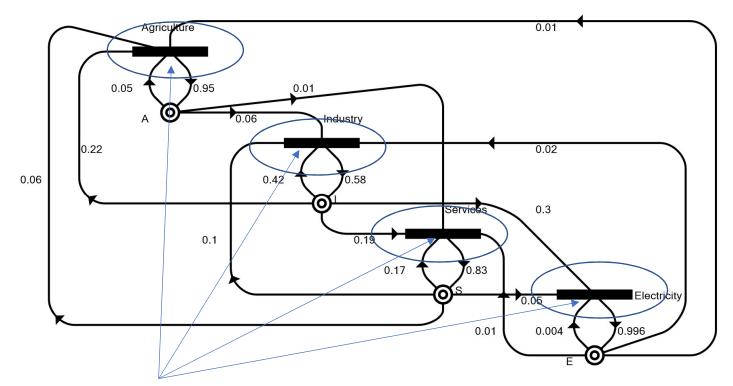
(Aviso et al., 2015)

- The Philippines is one of the most disaster-prone countries in the world
- Research that contributes to weakening the vicious cycle of disaster vulnerability is essential

http://commons.wikimedia.org


Drought causes electricity shortage

- Mindanao is the southern most major island of the Philippines
- Alternative energy is encouraged to mitigate greenhouse gas emissions
- Chronic electricity shortages are due to over-dependence on hydroelectric power
- A 4-sector low resolution Regional IO is used to demonstrate the implications of a 10% electricity shortage in Mindanao


P-graph model of a four sector economy

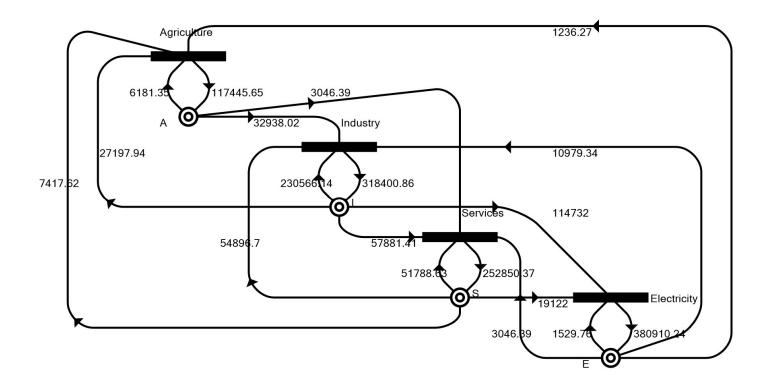
	Agriculture	Industry	Services	Electricity Generation
Agriculture	0.05	0.06	0.01	0.000
Industry	0.22	0.42	0.19	0.300
Services	0.06	0.10	0.17	0.050
Electricity Generation	0.01	0.02	0.01	0.004

P-graph model of a four sector economy



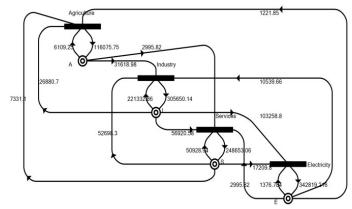
Economic Sectors

	Agriculture	Industry	Services	Electricity Generation
Agriculture	0.05	0.06	0.01	0.000
Industry	0.22	0.42	0.19	0.300
Services	0.06	0.10	0.17	0.050
Electricity Generation	0.01	0.02	0.01	0.004


P-graph model of a four sector economy

	Agriculture	Industry	Services	Electricity Generation
Agriculture	0.05	0.06	0.01	0.000
Industry	0.22	0.42	0.19	0.300
Services	0.06	0.10	0.17	0.050
Electricity Generation	0.01	0.02	0.01	0.004

Normal economic transactions (Baseline)



	In Thousand Pesos			
	Final Demand	Total Output		
Agriculture	81, 646	123, 678		
Industry	117, 565	547, 260		
Services	168, 693	301, 291		
Electricity Generation	367, 904	384, 637		

10% Reduction in electricity

How should electricity be allocated to maximize economic productivity?

Economic Sector	% Reduction in Final Demand	% Reduction in Total Output
Agriculture	0.00	1.17
Industry	0.00	4.04
Services	0.00	1.69
Electricity Generation	9.83	10.00
Over-all	2.79	4.95

Results

- The Agriculture, Industry and Services sectors experience no reduction in final demand
- Reduction in the total output of the Electricity sector results in reduced final output of other sectors
- □ Final Demand is prioritized

Human Resource Allocation in Crisis

(Aviso et al., 2016)

- Organizations have to be prepared to deal with climatic impacts that threaten operational continuity
- Models for dealing with workforce shortage during climatic disruptions should also be developed.
- Human resources are vital for the continuous operation of critical infrastructure

Problem statement for human resource allocation

- Given *N* departments in an organization with each department providing service
- □ There is a fixed ratio of personnel interaction required
- At normal conditions, the total number of personnel required for each department is known
- A disruption reduces the total number of personnel available

Minimize $\mathbf{p}^{\mathrm{T}} \mathbf{t}_{\mathrm{f}}$

 $At_f + e_f = t_f$

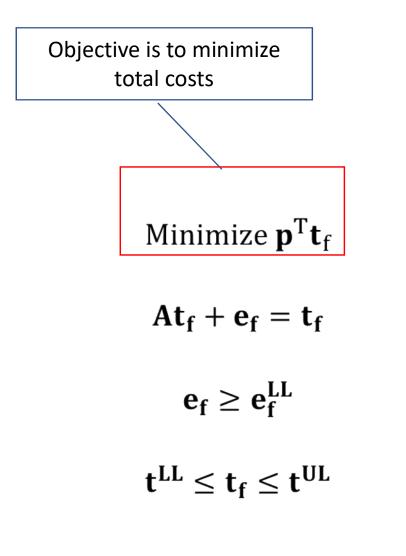
 $e_f \ge e_f^{LL}$

 $t^{LL} \leq t_f \leq t^{UL}$

Parameters

 $\label{eq:alpha} \begin{aligned} \mathbf{A} & - \text{Interaction matrix} \\ \mathbf{e}_{f}^{LL} & - \text{minimum demand output} \\ \mathbf{p}^{t} & - \text{price vector} \end{aligned}$

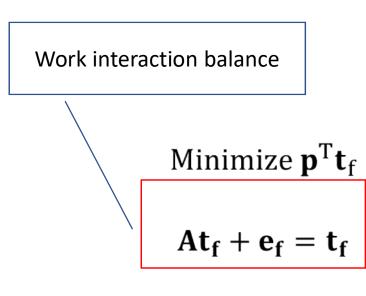
 $t^{\rm LL}$ - lower limit of personnel


 $t^{\rm UL}$ - upper limit of personnel

Variables

 \boldsymbol{e}_{f} - Net final demand output

 \boldsymbol{t}_{f} - total number of personnel

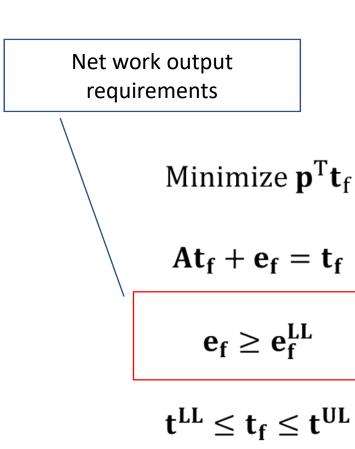


Parameters

- $\begin{array}{l} \mathbf{A}-\text{Interaction matrix} \\ \mathbf{e}_{f}^{\text{LL}} \text{ minimum demand output} \end{array}$
- \mathbf{p}^{t} price vector
- $t^{\rm LL}$ lower limit of personnel
- $t^{\rm UL}$ upper limit of personnel

- \boldsymbol{e}_f Net final demand output
- \boldsymbol{t}_{f} total number of personnel

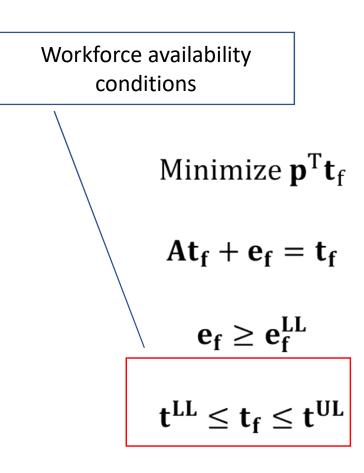
$$e_f \geq e_f^{LL}$$


$$\mathbf{t}^{\mathrm{LL}} \leq \mathbf{t}_{\mathrm{f}} \leq \mathbf{t}^{\mathrm{UL}}$$

Parameters

- A Interaction matrix
- $e_{\rm f}^{\rm LL}$ minimum demand output
- \boldsymbol{p}^{t} price vector
- $t^{\rm LL}$ lower limit of personnel
- $t^{\rm UL}$ upper limit of personnel

- \boldsymbol{e}_f Net final demand output
- \boldsymbol{t}_{f} total number of personnel



Parameters

- A Interaction matrix
- $e_{\rm f}^{\rm LL}$ minimum demand output
- \boldsymbol{p}^{t} price vector
- $t^{\rm LL}$ lower limit of personnel
- $t^{\rm UL}$ upper limit of personnel

- \boldsymbol{e}_f Net final demand output
- \boldsymbol{t}_{f} total number of personnel

Parameters

- A- Interaction matrix $e_{\rm f}^{\rm LL}$ minimum demand output
- \mathbf{p}^{t} price vector
- $t^{\rm LL}$ lower limit of personnel
- $t^{\rm UL}$ upper limit of personnel

- \mathbf{e}_{f} Net final demand output
- \boldsymbol{t}_{f} total number of personnel

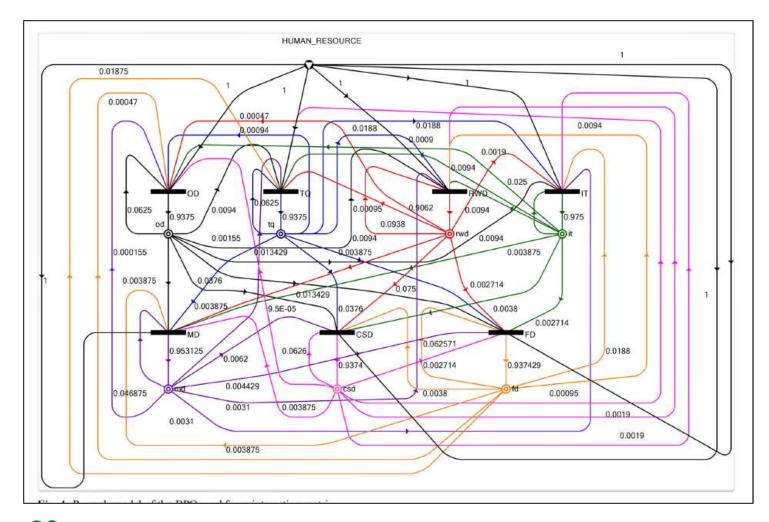
The Business Processing Outsourcing (BPO)

	Department
OD	Operations
TQ	Quality Assurance
RWD	Resource and Workforce
IT	Information Technology
MD	Marketing
CSD	Client Services
FD	Finance

BPO workforce interaction matrix (man-days/day)

	OD	TQ	RWD	IT	MD	CSD	FD	е	t
OD	12.50	0.188	0.094	0.094	0.031	0.188	0.094	186.8	200
TQ	0.188	1.250	0.188	0.188	0.031	0.188	0.094	17.87	20
RWD	0.094	0.019	0.938	0.019	0.031	0.375	0.019	8.505	10
IT	0.188	0.188	0.094	0.250	0.031	0.019	0.019	9.211	10
MD	0.031	0.031	0.031	0.031	0.375	0.031	0.031	7.439	8
CSD	0.019	0.019	0.019	0.019	0.031	0.313	0.019	4.561	5
FD	0.094	0.375	0.375	0.188	0.031	0.019	0.438	5.761	7

BPO workforce interaction matrix (man-days/day)


	OD	ΤQ	RWD	IT	MD	CSD	FD	е	t
OD	12.50	0.188	0.094	0.094	0.031	0.188	0.094	186.8	200
TQ	0.188	1.250	0.188	0.188	0.031	0.188	0.094	17.87	20
RWD	0.094	0.019	0.938	0.019	0.031	0.375	0.019	8.505	10
IT	0.188	0.188	0.094	0.250	0.031	0.019	0.019	9.211	10
MD	0.031	0.031	0.031	0.031	0.375	0.031	0.031	7.439	8
CSD	0.019	0.019	0.019	0.019	0.031	0.313	0.019	4.561	5
FD	0.094	0.375	0.375	0.188	0.031	0.019	0.438	5.761	7

Workforce Interaction Matrix

	OD	TQ	RWD	IT	MD	CSD	FD
OD	6.25	0.94	0.94	0.94	0.39	3.75	1.34
TQ	0.09	6.25	1.88	1.88	0.39	3.75	1.34
RWD	0.05	0.09	9.38	0.19	0.39	7.50	0.27
IT	0.09	0.94	0.94	2.50	0.39	0.38	0.27
MD	0.02	0.16	0.31	0.31	4.69	0.63	0.45
CSD	0.01	0.09	0.19	0.19	0.39	6.25	0.27
FD	0.05	1.88	3.75	1.88	0.39	0.38	6.25

P-graph model of BPO case

Reductions in workforce

Department	Initial Reduction (%)	Max. allowable reduction (%)
OD	2.00	5.00
TQ	5.00	10.00
RWD	5.00	10.00
IT	2.00	3.00
MD	10.00	30.00
CSD	10.00	30.00
FD	10.00	3.00

Optimal solution

	OD	TQ	RWD	IT	MD	CSD	FD	е	t	tavail
OD	12.25	0.179	0.089	0.092	0.028	0.169	0.085	183.1	196	196
TQ	0.184	1.188	0.179	0.184	0.028	0.169	0.085	16.98	19.0	19.0
RWD	0.092	0.018	0.891	0.019	0.028	0.338	0.017	8.098	9.50	9.50
IT	0.184	0.179	0.089	0.245	0.028	0.017	0.017	9.049	9.81	9.81
MD	0.030	0.029	0.029	0.030	0.338	0.028	0.028	6.687	7.20	7.20
CSD	0.019	0.018	0.019	0.018	0.028	0.282	0.017	4.100	4.50	4.50
FD	0.092	0.356	0.089	0.184	0.028	0.017	0.394	5.139	6.30	6.30

All departments are within the threshold level of workforce reduction
 A reduction of 2.96% in total workforce but total reduction in output is only 2.92%


Solution for 1% workforce reduction

	OD	TQ	RWD	IT	MD	CSD	FD	е	tnew	told
OD	12.45	0.187	0.092	0.094	0.031	0.133	0.094	186.1	199.2	200
TQ	0.188	1.246	0.184	0.188	0.031	0.133	0.094	17.87	19.94	20
RWD	0.094	0.019	0.917	0.019	0.031	0.266	0.019	8.408	9.773	10
IT	0.187	0.187	0.092	0.250	0.031	0.013	0.019	9.203	9.982	10
MD	0.031	0.031	0.030	0.031	0.375	0.022	0.031	7.439	7.990	8
CSD	0.019	0.019	0.019	0.019	0.031	0.222	0.019	3.194	3.542	5
FD	0.094	0.374	0.092	0.188	0.031	0.013	0.437	5.761	6.990	7

Workforce is allocated to departments with low tolerance for workforce reduction

Sensitivity Analysis on Workforce Disruption

Impact on department given varying workforce disruptions

□Some departments are more prioritized than others

Conclusions and Future Work

- □ A P-graph approach for the IO model has been developed
- Model can be used for the allocation of various types of resource has been presented
- P-graph and IO can be used for analyzing impact of disruptions on the system
- Model can be implemented at various levels of implementation (e.g. economic systems, organizations, supply chains)
- Future work can focus on integrating this approach within a comprehensive decision analysis framework

Other Areas of Application

ELSEVIER	Contents lists available at ScienceDirect Journal of Cleaner Production SEVIER journal homepage: www.elsevier.com/locate/jclepro								
undergoing to Kathleen B. Avis Rochelle Irene C	o ^{a.} , Anthony S.F. Chiu ^{b. e} , Fee S. Lucas ^d , Ming-Lang Tseng ^{e. f.} , warment, <i>Colongwell College of Engineering</i> . <i>Be to S</i> IRENE CONTRACT IRENE CO	to Optimizing Crisi	sities	11 · · · · · · · · · · · · ·					
	and Luis F. Razon [†] [†] Chemical Engineering Department [†] Research Center for the Natural a ABSTRACT: Industrial complex also vulnerable to cascading failur may cause significant perturbatio industrial complexes, proper risk resilience measures. Rigorous methods resilience in this paper, a P-grap minimize manufacturing losses; problems but has recently proven of production capacities and prod illustrate the methodology.	P-graph approach to op plants under condition Raymond R. Tan *, Christina I	Applied Energy 132 (2014) 402- Contents lists available at Solier Applied Energy arreat homepage: www.elsevier.com of process inoperability O cayamanda, Kathleen B. Aviso wereig, 2401 rgft Avenue, 0227 Munik, Rhitpitgt A DST FACT D Ngeneration plants are inherently mo opinical in stand-shope production syste in stand-sace, the major operational com of the baseline stard by reallocating po you have by reallocating po yo	reefficient, and generate reduced of minimum and generate reduced of generate minimum and generate reduced of generate reduced of generate minimum and generate reduced of gen	emissions, ss integrati among pro r of key sys (or minim e run at pa termine th termine th toote, we pr ns, and den				
	NORES CUL	-							

Multiregional Disaster Risk Analysis in the Philippines January 22, 2020 KL Serviced Residences

CrossMark

n comparison to on opportunities ess units, which em components re losses relative tial load or shu optimal operapose an alternaonstrate it using rights reserved

- Human resource planning in universities
- Crisis operations in Industrial complexes
- Inoperability in energy systems

References

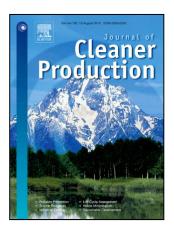
Aviso, K. B., Cayamanda, C. D., Solis, F. D. B., Danga, A. M. R., Promentilla, M. A. B., Yu, K. D. S., Santos, J.R. & Tan, R. R. (2015). P-graph approach for GDP-optimal allocation of resources, commodities and capital in economic systems under climate change-induced crisis conditions. Journal of Cleaner Production, 92, 308-317.

Aviso, K. B., Cayamanda, C. D., Mayol, A. P., & Yu, K. D. S. (2017). Optimizing human resource allocation in organizations during crisis conditions: a P-graph approach. Process Integration and Optimization for Sustainability, 1(1), 59-68.

Aviso, K. B., Chiu, A. S., Demeterio III, F. P., Lucas, R. I. G., Tseng, M. L., & Tan, R. R. (2019). Optimal human resource planning with P-graph for universities undergoing transition. Journal of cleaner production, 224, 811-822.

Tan, R. R., Cayamanda, C. D., & Aviso, K. B. (2014). P-graph approach to optimal operational adjustment in polygeneration plants under conditions of process inoperability. Applied Energy, 135, 402-406.

Tan, R. R., Benjamin, M. F. D., Cayamanda, C. D., Aviso, K. B., & Razon, L. F. (2016). P-graph approach to optimizing crisis operations in an industrial complex. Industrial & Engineering Chemistry Research, 55(12), 3467-3477.



Kathleen B. Aviso, Ph.D.

Professor, Chemical Engineering Department Assistant Dean for Research and Advanced Studies Gokongwei College of Engineering De La Salle University

Author

Input-Output Models for Sustainable Industrial Systems: Implementation using LINGO

Raymond R. Tan

and D Control

Input-Output

Industrial Systems

Springe

Models for

Sustainable

Kathleen B. Aviso Michael Angelo B. Promentilla Krista Danielle S. Yu

> Associate Editor Journal of Cleaner Production (Elsevier) 2018 Impact Factor: 6.395

Thank you

For comments and suggestions you may also contact me at:

Tel. No.: + 632 – 5244611 loc 127

Email: kathleen.aviso@dlsu.edu.ph

BPO workforce transaction matrix (man-days/day)

	OD	TQ	RWD	IT	MD	CSD	FD
OD	6.25	0.94	0.94	0.94	0.39	3.75	1.34
TQ	0.09	6.25	1.88	1.88	0.39	3.75	1.34
RWD	0.05	0.09	9.38	0.19	0.39	7.50	0.27
IT	0.09	0.94	0.94	2.50	0.39	0.38	0.27
MD	0.02	0.16	0.31	0.31	4.69	0.63	0.45
CSD	0.01	0.09	0.19	0.19	0.39	6.25	0.27
FD	0.05	1.88	3.75	1.88	0.39	0.38	6.25

Workforce Interaction Matrix

A Hypothetical Acute Care Hospital

List of departments in ACH.

	Departments
D1	High-level Management
D2	Middle-level Management
D3	General Administration
D4	Support Administration
D5	Finance Administration
D6	Human Services
D7	Information Services
D8	Medical Staff
D9	Nursing Staff
D10	Ancillary Staff

Transaction matrix (**P**), net output of work (\mathbf{e}_0) and initial total work load (\mathbf{t}_0) for case study 1 (in man-days per day).

	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	e ₀	t ₀
D1	0.80	1.40	0.04	0.04	0.04	0.04	0.20	0.04	0.40	0.20	0.80	4
D2	3.60	2.40	1.50	0.30	1.50	2.40	1.50	4.80	4.50	4.50	3.00	30
D3	0.83	20.75	24.90	0.83	4.15	4.15	1.66	5. <mark>81</mark>	1.66	12.45	5.81	83
D4	0.12	0.12	0.00	1.20	0.12	0.36	0.60	1.20	2.40	3.60	2.28	12
D5	4.32	6.24	0.96	0.96	19.20	0.96	3.84	2.40	0.96	0.96	7.20	48
D6	0.60	1.20	0.60	0.60	0.60	2.40	0.60	0.60	0.60	1.80	2.40	12
D7	5.55	11.10	5.55	1.11	16.65	5.55	33.30	16.65	5.55	7.77	2.22	111
D8	0.45	0.45	0.45	0.45	0.45	0.45	0.45	1.35	4.50	13.50	22.50	45
D9	1.98	1.98	1.98	1.98	1.98	1.98	1.98	3.96	29.70	19.80	130.68	198
D10	0.20	1.00	1.40	0.20	0.80	1.00	1.40	6.60	1.00	2.40	4.00	20

Workforce interaction matrix (A) for case study 1.

aî a	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
D1	0.200	0.047	0.000	0.003	0.001	0.003	0.002	0.001	0.002	0.010
D2	0.900	0.080	0.018	0.025	0.031	0.200	0.014	0.107	0.023	0.225
D3	0.208	0.692	0.300	0.069	0.086	0.346	0.015	0.129	0.008	0.623
D4	0.030	0.004	0.000	0.100	0.003	0.030	0.005	0.027	0.012	0.180
D5	1.080	0.208	0.012	0.080	0.400	0.080	0.035	0.053	0.005	0.048
D6	0.150	0.040	0.007	0.050	0.013	0.200	0.005	0.013	0.003	0.090
D7	1.388	0.370	0.067	0.093	0.347	0.463	0.300	0.370	0.028	0.389
D8	0.113	0.015	0.005	0.038	0.009	0.038	0.004	0.030	0.023	0.675
D9	0.495	0.066	0.024	0.165	0.041	0.165	0.018	0.088	0.150	0.990
D10	0.050	0.033	0.017	0.017	0.017	0.083	0.013	0.147	0.005	0.120

